A 28.6dBm, 65nm Class-E PA with Envelope Restoration by Pulse-Width and Pulse-Position Modulation

J. S. Walling1,2, H. Lakdawala2, Y Palaskas2, A. Ravi2, O. Degani2, K. Soumyanath2, D. J. Allstot1

1University of Washington, Seattle, WA
2Intel, Hillsboro, OR
Outline

• Motivation
• Bandpass Pulse Modulation
• PWM Combiner/Driver Design
• Class E PA Design
• Measurement Results
• Conclusions
Motivation - I

- Many envelope PDFs are Rayleigh
Motivation - I

- Many envelope PDFs are Rayleigh
- Desire a PA with high efficiency at backoff
Motivation - I

- Many envelope PDFs are Rayleigh
- Desire a PA with high efficiency at backoff
- Switching PAs
 - Good efficiency
 - Need envelope restoration
Motivation - II

- **EER**
 - Time align difficult
 - Need DAC and supply modulator
 - Good dynamic range

- **Outphasing**
 - Need 2 PAs
 - Combiner is cumbersome
 - Good dynamic range
Motivation - III

- PWPM
 - Outphasing with combiner before PA
 - Use a single PA
 - Moderate dynamic range
Bandpass Pulse-Width Modulation - I

\[f_0 = \frac{1}{T} \]

- \(\text{PWM Amp.} \propto \text{duty cycle} \)

\[a_o = \frac{4}{\pi} \sin d\pi \]

\[d = \frac{\tau}{T} \]

- \(\text{BPF} \rightarrow \text{remove harmonic content} \)
Pulse Width Modulator - I

- Envelope stored in “outphasing” angle
- Large angle \rightarrow small envelope
- Small angle \rightarrow large envelope
Pulse Width Modulator - I
Pulse Width Modulator - II
PWM Combiner - Clock RX

\[\text{Out}^- \quad \text{M}_3 \quad \text{M}_4 \quad \text{Out}^+ \]

\[\text{In}^+ \quad \text{M}_1 \quad \text{M}_2 \quad \text{In}^- \]

\[\text{V}_x \quad \text{M}_5 \quad \text{M}_6 \quad \text{M}_7 \quad \text{M}_8 \]

ISSCC 2008
PWM Combiner - Buffer and Retiming

- Retiming every two stages
- 6 stages total
PWM Combiner – Diff NOR
PA Driver

Small Fan Out \rightarrow Needed for narrow pulses
Class-E Power Amplifier - I

- v_D, i_D shaped \rightarrow minimal overlap
- Ideally ZVS
- Switch on \rightarrow energy stored in L_d
- Switch off \rightarrow energy transferred to output tank
Class-E Power Amplifier - II

- **Stress** –
 \(v_D \sim 3.6V_{DD} \)

- **Occurs @ M\(_1\) off** → No “hot carrier” effect

- **Oxide Breakdown** → \(V_{DG} \) still large

- **Rule of thumb** → max \(V_{DG} < 2V_{DD,nom} \)

Drain-Gate Max Voltage

<table>
<thead>
<tr>
<th>Switch “On”</th>
<th>Switch “Off”</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6V(_{DD})</td>
<td>(V_{DD,DR})</td>
</tr>
</tbody>
</table>
Class-E Power Amplifier - III

- Cascode \rightarrow Reduce stress per device
- Thick Gate I/O devices
- Finite supply inductor \rightarrow reduced peak v_D ($\sim 2.5V_{DD}$)

<table>
<thead>
<tr>
<th></th>
<th>Drain-Gate Max Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch “On”</td>
<td>Switch “Off”</td>
</tr>
<tr>
<td>M_2</td>
<td>V_B</td>
</tr>
<tr>
<td>M_1</td>
<td>$V_{DD,DR}$</td>
</tr>
</tbody>
</table>

ISSCC 2008
Coarse Power Control

- 4 unit cells
- Coarse power control by disenabling path
- Switch layout optimized → Tradeoff R and C
PWPM PA Schematic

ISSCC 2008
Chip Microphotograph

- 65 nm Standard CMOS
- No UTM, No MIM
PA Characterization

4438C

Balun

\(\phi_1 \)

Combiner & PA

\(\phi_2 \)

Out+

Out-

Sense

Balun

4440A

Unit Buffer

Unit Buffer

\(x1 \)

\(x6 \)

3.5k\(\Omega \)

Sense

6pF
PA Output vs. Duty Cycle - I
PA Output vs. Duty Cycle - II

Coarse Power Control

Output Power (dBm)

PAE (%)
PA Output vs. Frequency

Output Power (dBm) vs. Frequency (GHz)

PAE (%) vs. Frequency (GHz)
PA Vector Signal Measurement
GMSK Modulated Signal

EVM=1.2% rms
Pout=27.5 dBm
PAE=25.3%
Spectral Mask
PA Envelope Correction

- Correction is offline
- Envelope ramp and measurement
- Correction $\rightarrow 6^{\text{th}}$ order polynomial fit
\(\pi/4\)-DQPSK Modulated Signal

EVM=4.6\% rms
Pout=26.7 dBm
PAE=21\%
PA Summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>65nm, no UTM, no MIM</td>
</tr>
<tr>
<td>Pout - Peak (dBm)</td>
<td>28.6</td>
</tr>
<tr>
<td>PAE - Peak (%)</td>
<td>28.8</td>
</tr>
<tr>
<td>Frequency Range (GHz)</td>
<td>1.6 – 2.5</td>
</tr>
<tr>
<td>P_{out} PWM (dBm)</td>
<td>21.6 – 28.6</td>
</tr>
<tr>
<td>P_{out} PWM + Core Switching (dBm)</td>
<td>15.3 – 28.6</td>
</tr>
<tr>
<td>Voltage - Output Stage - (V)</td>
<td>2.5</td>
</tr>
<tr>
<td>Voltage - Driver & Comb. - (V)</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Conclusions

• A PWPM PA is introduced in 65nm CMOS
• The PA achieves a peak power of 28.6 dBm
• The PA with PWPM is suitable for applications of moderate peak-average (~6-10 dBm)